(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
g(f(x, y), z) → f(x, g(y, z))
g(h(x, y), z) → g(x, f(y, z))
g(x, h(y, z)) → h(g(x, y), z)
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
g(f(z0, z1), z2) → f(z0, g(z1, z2))
g(h(z0, z1), z2) → g(z0, f(z1, z2))
g(z0, h(z1, z2)) → h(g(z0, z1), z2)
Tuples:
G(f(z0, z1), z2) → c(G(z1, z2))
G(h(z0, z1), z2) → c1(G(z0, f(z1, z2)))
G(z0, h(z1, z2)) → c2(G(z0, z1))
S tuples:
G(f(z0, z1), z2) → c(G(z1, z2))
G(h(z0, z1), z2) → c1(G(z0, f(z1, z2)))
G(z0, h(z1, z2)) → c2(G(z0, z1))
K tuples:none
Defined Rule Symbols:
g
Defined Pair Symbols:
G
Compound Symbols:
c, c1, c2
(3) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
G(f(z0, z1), z2) → c(G(z1, z2))
G(h(z0, z1), z2) → c1(G(z0, f(z1, z2)))
We considered the (Usable) Rules:none
And the Tuples:
G(f(z0, z1), z2) → c(G(z1, z2))
G(h(z0, z1), z2) → c1(G(z0, f(z1, z2)))
G(z0, h(z1, z2)) → c2(G(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(G(x1, x2)) = [4]x1 + [5]x2
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(f(x1, x2)) = [2] + x2
POL(h(x1, x2)) = [5] + x1 + x2
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
g(f(z0, z1), z2) → f(z0, g(z1, z2))
g(h(z0, z1), z2) → g(z0, f(z1, z2))
g(z0, h(z1, z2)) → h(g(z0, z1), z2)
Tuples:
G(f(z0, z1), z2) → c(G(z1, z2))
G(h(z0, z1), z2) → c1(G(z0, f(z1, z2)))
G(z0, h(z1, z2)) → c2(G(z0, z1))
S tuples:
G(z0, h(z1, z2)) → c2(G(z0, z1))
K tuples:
G(f(z0, z1), z2) → c(G(z1, z2))
G(h(z0, z1), z2) → c1(G(z0, f(z1, z2)))
Defined Rule Symbols:
g
Defined Pair Symbols:
G
Compound Symbols:
c, c1, c2
(5) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
G(z0, h(z1, z2)) → c2(G(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
G(f(z0, z1), z2) → c(G(z1, z2))
G(h(z0, z1), z2) → c1(G(z0, f(z1, z2)))
G(z0, h(z1, z2)) → c2(G(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(G(x1, x2)) = [4]x1 + x2
POL(c(x1)) = x1
POL(c1(x1)) = x1
POL(c2(x1)) = x1
POL(f(x1, x2)) = [3] + x1 + x2
POL(h(x1, x2)) = [1] + x1 + x2
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
g(f(z0, z1), z2) → f(z0, g(z1, z2))
g(h(z0, z1), z2) → g(z0, f(z1, z2))
g(z0, h(z1, z2)) → h(g(z0, z1), z2)
Tuples:
G(f(z0, z1), z2) → c(G(z1, z2))
G(h(z0, z1), z2) → c1(G(z0, f(z1, z2)))
G(z0, h(z1, z2)) → c2(G(z0, z1))
S tuples:none
K tuples:
G(f(z0, z1), z2) → c(G(z1, z2))
G(h(z0, z1), z2) → c1(G(z0, f(z1, z2)))
G(z0, h(z1, z2)) → c2(G(z0, z1))
Defined Rule Symbols:
g
Defined Pair Symbols:
G
Compound Symbols:
c, c1, c2
(7) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(8) BOUNDS(O(1), O(1))